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1 Introduction

Suppose that G is a graph, and imagine that we have placed pebbles at
some of the vertices of G. Traditionally, a pebbling move on G is defined as
follows. If a vertex v of G contains at least two pebbles, then we may remove
two pebbles from v, and add one pebble to a vertex adjacent to v. (If we
have a directed graph, then we may only add a pebble to a vertex w if there
is an edge which goes from v to w.) The pebbling number of G is then
defined as the smallest number s with the property that if the initial config-
uration contains at least s pebbles, then no matter how they are configured
it is always possible to find a sequence (possibly empty) of pebbling moves
which places a pebble on any specified vertex. There are many variations of
the pebbling number which can be studied, and [3] is an excellent reference.

For our purposes, we make a cosmetic change in the definition of a peb-
bling move. Instead of removing two pebbles from v and then adding an
entirely new pebble to the graph, we will remove one pebble from v and then
move another pebble from v to an adjacent vertex. While the two definitions
are obviously equivalent in terms of which configurations of pebbles can arise
on the graph, our definition allows us to follow a particular pebble through a
sequence of pebbling moves. For a positive integer d, we define the distance
d pebbling number of G to be the smallest number s such that if the ini-
tial configuration contains at least s pebbles, then there must exist a pebble
which can be moved to a vertex which is at a distance of at least d from its
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starting point. This can also be thought of as finding the target pebbling
number π−(G,D) (see the introduction to [3]), where D is a particular set
of configurations of pebbles on G.

In this article, we will determine the distance d pebbling numbers for a
directed cycle graph with n vertices. Let us denote this number by Pn(d).
Then we have the following theorem.

Theorem 1. Suppose that d < n, and write n = dq + r, where q, r are inte-
gers with 0 ≤ r ≤ d− 1. Then we have Pn(d) =

(
2d − 1

)
q + 2r.

It is not too hard to see that Pn(d) must be at least as large as the bound
in the theorem. Label the vertices of the graph consecutively as v0, . . . , vn−1.
Put 2d−1 pebbles on each of v0, vd, v2d, . . . , v(q−1)d, and put 2r−1 pebbles on
vqd. Then it is not hard to see that none of the pebbles on v0 can be moved to
vd, none of the pebbles on vd can be moved to v2d, and so on. Moreover, none
of the pebbles on vqd can be moved to v0. Our initial configuration involves(
2d − 1

)
q + 2r − 1 pebbles, but no pebble can be moved d vertices from its

starting point. Hence we must have Pn(d) ≥
(
2d − 1

)
q + 2r. To complete

the proof of the theorem, it suffices to show that in any initial configuration
of exactly

(
2d − 1

)
q + 2r pebbles, there does exist a pebble which can be

moved d vertices. We will show that this is indeed the case in Sections 3 and
4.

We note that the same techniques that are used in this article can be
used to prove an interesting result about solutions of homogeneous additive
equations over the field Q2 of 2-adic numbers. If a positive integer n is given,
then the techniques in this article can be used to find the smallest number s
of variables which guarantees that the equation

a1x
n
1 + a2x

n
2 + · · ·+ asx

n
s = 0

always has a nontrivial 2-adic solution regardless of the (2-adic integer) values
of the coefficients. In fact, the bound itself is entirely analogous to the one
in our theorem here. The interested reader may refer to the article [4], which
can be thought of as a companion paper to this one.
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2 Preliminary Lemmata

In this section, we give the preliminary lemmata needed to prove our formula
for the value of Pn(d). One of our key tools is the following combinatorial
lemma due to Davenport & Lewis [1].

Lemma 2. Let a0, a1, . . . , an−1 be real numbers, and put aj+n = aj for all j.
Let

a0 + a1 + · · ·+ an−1 = s.

Then there exists a number r such that

ar + · · ·+ ar+t−1 ≥ ts/n for t = 1, . . . , n.

For our purposes, we can interpret this result as follows. Given an initial
configuration of s pebbles on the graph, we wish to select a vertex to call v0
and then label the vertices consecutively as v0, v1, . . . , vn−1. Let mi represent
the number of pebbles at the vertex vi. Then Lemma 2 says that we may
select v0 so that we have m0 + · · ·+mt−1 ≥ ts/n for t = 1, . . . , n.

We now prove a lemma about the greatest integer function, which gener-
alizes [2, Lemma 4.14]. In the proof of Theorem 1, we only need the special
case where bi = 2 for each i. But it is just as easy to prove the lemma in full
generality, and so we do so here.

Lemma 3. Suppose that a1, a2, . . . are nonnegative integers and that b1, b2, . . .
are positive integers. Define the numbers gi = gi(a,b) recursively by

g1 =

[
a1
b1

]
and

gi+1 =

[
gi + ai+1

bi+1

]
,

where [·] represents the greatest integer function (i.e., [x] returns the greatest
integer less than or equal to x). Then for all i, we have

gi =

[
a1

b1 · · · bi
+

a2
b2 · · · bi

+
a3

b3 · · · bi
+ · · ·+ ai

bi

]
.
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For example, when i = 2 this lemma says that
[
a1
b1

]
+ a2

b2

 =

[
a1
b1b2

+
a2
b2

]

and when i = 3 it says that we have
[[

a1
b1

]
+a2

b2

]
+ a3

b3

 =

[
a1

b1b2b3
+

a2
b2b3

+
a3
b3

]
.

Proof. The lemma is obviously true for i = 1. Suppose by way of induction
that it is true for a specific number i. Then we have

gi+1 ≤
gi + ai+1

bi+1

< gi+1 + 1.

Our inductive hypothesis then leads to

bi+1gi+1−ai+1 ≤
[

a1
b1 · · · bi

+
a2

b2 · · · bi
+

a3
b3 · · · bi

+ · · ·+ ai
bi

]
< bi+1(gi+1+1)−ai+1.

Since these upper and lower bounds are both integers, this implies that we
have

bi+1gi+1−ai+1 ≤
a1

b1 · · · bi
+

a2
b2 · · · bi

+
a3

b3 · · · bi
+ · · ·+ ai

bi
< bi+1(gi+1+1)−ai+1,

which gives

gi+1 ≤
a1

b1 · · · bibi+1

+
a2

b2 · · · bibi+1

+
a3

b3 · · · bibi+1

+ · · ·+ ai
bibi+1

+
ai+1

bi+1

< gi+1+1.

Since gi+1 is an integer, the last inequality immediately implies that

gi+1 =

[
a1

b1 · · · bibi+1

+
a2

b2 · · · bibi+1

+ · · ·+ ai
bibi+1

+
ai+1

bi+1

]
.

This completes the proof of the lemma.
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We now use Lemma 3 to prove a lemma and corollary which give con-
ditions guaranteeing that we can move a pebble from a vertex vj on the
directed cycle graph to another vertex vj+k.

Lemma 4. Consider a directed cycle graph with n consecutive vertices v0, v1, . . .,
where the subscripts are meant to be interpreted modulo n. Let mi be the num-
ber of pebbles at vertex i, and fix a vertex vj and a positive integer k < n.
Define numbers g1, g2, . . . inductively by g1 =

[mj

2

]
and

gi =

[
gi−1 +mj+i−1

2

]
for i ≥ 2.

Then we can move a pebble from vj to vj+k if we have gi ≥ 1 for 1 ≤ i ≤ k.

Proof. We begin with a few simple (and perhaps overly pedantic) observa-
tions. We can move a pebble from vj to vj+k if and only if we can move it first
to vj+1, then to vj+2, and so on until it is eventually at vj+k. Next, suppose
that we can move a pebble from a vertex vj to vj+1. If we can subsequently
move any pebble from vj+1 to vj+2, then we can arrange for this pebble to be
the one which came from vj. Hence, we can move a pebble from vj to vj+2 if
and only if we can move a pebble from vj to vj+1, and then move a pebble
from vj+1 to vj+2. (In other words, we only need to determine whether mov-
ing a pebble is possible, and don’t have to keep track of which pebbles are
being moved.) By induction, we can move a pebble from vj to vj+k if and only
if we can first move a pebble from vj to vj+1, then move a pebble from vj+1

to vj+2, and so on, eventually being able to move a pebble from vj+k−1 to vj+k.

Now, when we begin making pebbling moves, we have mj pebbles sta-
tioned at vj. Then the number of pebbles we can move to vj+1 is

[mj

2

]
= g1,

since this is the number of disjoint pairs of pebbles at vj. So we can move
a pebble from vj to vj+1 if g1 ≥ 1. After moving as many pebbles as possi-
ble from vj to vj+1, the number of pebbles at vj+1 will be g1 + mj+1. The
maximum number of pebbles we can then move from vj+1 to vj+2 will be[g1+mj+1

2

]
= g2. Hence we can move a pebble from vj to vj+2 if g1 ≥ 1 and

g2 ≥ 1. Continuing in this manner, we see that we can move a pebble from
vj to vj+k if gi ≥ 1 for 1 ≤ i ≤ k. This completes the proof of the lemma.
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Corollary 5. With all variables as in Lemma 4, we can move a pebble from
vj to vj+k if we have

mj ≥ 2

mj + 2mj+1 ≥ 4

mj + 2mj+1 + 4mj+2 ≥ 8
...

...

mj + 2mj+1 + 4mj+2 + · · ·+ 2k−1mj+k−1 ≥ 2k.

Proof. We will show that the condition gi ≥ 1 is equivalent to the i-th in-
equality in the system. We have

gi =

[
gi−1 +mj+i−1

2

]
=

[[gi−2+mj+i−2

2

]
+mj+i−1

2

]
...

=


[

[
mj
2 ]+···
2

]
+mj+i−1

2


=

[mj

2i
+
mj+1

2i−1
+
mj+2

2i−2
+ · · ·+ mj+i−1

2

]
,

where the last equality is true by Lemma 3.

Hence we have gi ≥ 1 if and only if we have

mj

2i
+
mj+1

2i−1
+
mj+2

2i−2
+ · · ·+ mj+i−1

2
≥ 1.

This is equivalent to having

mj + 2mj+1 + 4mj+2 + · · ·+ 2i−1mj+i−1 ≥ 2i,

which is indeed the i-th inequality. This completes the proof of the corollary.

6



We finish this section with two straightforward lemmata. These are also1

Lemmata 3.1 and 3.2 of [4]. We repeat the proofs here for completeness.

Lemma 6. Suppose that n, N , and a are positive integers such that aN/n >
2a − 1. Then we have kN/n > 2k − 1 for all k satisfying 0 < k < a.

Proof. It is sufficient to show that g(x) = 2x−1
x

is an increasing function for

x > 0. We have g′(x) = x2x ln(2)−(2x−1)
x2

. The Mean Value Theorem implies
that there exists c with 0 < c < x such that 2x−1

x
= 2c ln(2) < 2x ln(2). Thus

x2x ln(2)− (2x − 1) > 0 and it follows that g′(x) > 0.

Lemma 7. Suppose that d, q are positive integers with d ≥ 2, that r is
an integer with 0 ≤ r < d, and set n = dq + r. Moreover, suppose that
m0, . . . ,md−2 are integers such that

m0 + · · ·+mk−1 ≥
k
(
(2d − 1)q + 2r

)
n

for 1 ≤ k ≤ d− 1. Then we have

m0 + · · ·+mk−1 > 2k − 1

for 1 ≤ k ≤ d− 1.

Proof. By Lemma 6 with N = (2d−1)q+2r, it suffices to prove the conclusion
for k = d− 1. Therefore we only need to show that

(d− 1)
(
(2d − 1)q + 2r

)
n

> 2d−1 − 1.

Some algebra shows that this is true if and only if we have

2d−1(dq − 2q − r) + (2r(d− 1) + q + r) > 0. (1)

To see that (1) holds, we simply note that

2d−1(dq − 2q − r) + 2r(d− 1) + q + r

≥ 2r(dq − 2q − (d− 1)) + 2r(d− 1) + q + r

= 2r(d− 2)q + q + r

> 0.

This completes the proof of the lemma.

1The statements and proofs of these lemmata were suggested by the anonymous referee
of [4]. This both strengthened the lemmata from previous drafts and simplified their proofs.
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3 Proof of the Theorem - The Easy Cases

In this section, we prove Theorem 1 when d ≤ 2, and also when n is divisible
by d. The proof of the remaining cases is somewhat more complex and will
be given in the next section.

Lemma 8. We have Pn(1) = n+ 1 for any n, as in Theorem 1.

Proof. This case of Theorem 1 is trivial. As shown in the remarks after the
statement of the theorem, we only need to show that Pn(1) ≤ n + 1. If
there are n + 1 pebbles on a graph with n vertices, then some vertex has
two pebbles, and a pebbling move can be made, allowing a pebble to move a
distance of 1 from its starting position. Hence Pn(1) ≤ n+ 1, and the proof
is complete.

Lemma 9. If d|n, with n = dq, then we have Pn(d) = (2d − 1)q + 1, as in
Theorem 1.

Proof. As above, it suffices to show that (2d− 1)q+ 1 is an upper bound for
Pn(d). Suppose that there are exactly (2d − 1)q + 1 pebbles on the graph.
As discussed in the remarks after Lemma 2, we can label the vertices con-
secutively as v0, v1, . . . , vn−1 in such a way that if mi represents the number
of pebbles at the vertex vi, then we have

m0 +m1 + · · ·+mk−1 ≥
k
(
(2d − 1)q + 1

)
n

(2)

for k = 1, 2, . . . , n. We wish to show that it is always possible to move a
pebble from v0 to vd. Thus, with j = 0 in Corollary 5, we must show that

m0 + 2m1 + · · ·+ 2k−1mk−1 ≥ 2k

for 1 ≤ k ≤ d. We’ll do even a little bit better than this, showing that

m0 +m1 + · · ·+mk−1 ≥ 2k

for these k. By (2), and noting that m0 + · · ·+ mk−1 must be an integer, it
suffices to show that

k
(
(2d − 1)q + 1

)
n

> 2k − 1
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for each k in question.

By Lemma 6, we only need to prove the inequality when k = d. However,
this is trivial since when k = d we have

k((2d − 1)q + 1)

n
= 2d − 1 +

1

q
> 2d − 1.

This completes the proof of the lemma.

Lemma 10. Suppose that d = 2 and write n = 2q+ r with 0 ≤ r ≤ 1. Then
we have Pn(2) = 3q + 2r, as in Theorem 1.

Proof. If r = 0, then we are done by Lemma 9. Assume then that r = 1 and
that there are exactly 3q + 2 pebbles on the graph. Using Lemma 2, label
the vertices in the same way as in the proof of Lemma 9. We will show that
it is always possible to move a pebble from v0 to v2. It is enough to show
that m0 ≥ 2 and m0 +m1 ≥ 4. By Lemma 2, we have

m0 ≥
3q + 2

2q + 1
> 1.

Since m0 is an integer, this implies that m0 ≥ 2, as desired. Similarly, Lemma
2 yields

m0 +m1 ≥
2(3q + 2)

2q + 1
=

6q + 4

2q + 1
> 3,

and again we obtain the desired conclusion since m0 +m1 is an integer.

This shows that Pn(2) ≤ 3q + 2r. As above, since we know that Pn(2) ≥
3q + 2r, we must have equality, completing the proof of the lemma.

4 Completion of the Proof of the Theorem

In this section, we prove Theorem 1 in the case where d ≥ 3 and d - n.
Suppose that n = dq + r with 1 ≤ r ≤ d − 1, and let N =

(
2d − 1

)
q + 2r.

As before, we only need to prove that Pn(d) ≤ N , and so we suppose that
there are exactly N pebbles on the graph. Label the vertices consecutively
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as v0, . . . , vn−1 so that if mi represents the number of pebbles on vertex vi,
then we have

m0 + · · ·+mk−1 ≥
kN

n

for all 1 ≤ k ≤ n.

By Lemma 7, noting that m0+· · ·+mk−1 is an integer, we have m0+· · ·+
mk−1 ≥ 2k for 1 ≤ k ≤ d− 1. If in addition we have m0 + · · · + md−1 ≥ 2d,
then by Corollary 5 we can move a pebble from v0 to vd, and we are done.
Hence we may assume that m0 + · · ·+md−1 ≤ 2d − 1. This implies that

md + · · ·+mn−1 ≥ N −
(
2d − 1

)
=
(
2d − 1

)
(q − 1) + 2r.

By Lemma 2 we can now relabel the vertices vd, . . . , vn−1 as w0, . . . , wn−d−1
such that both of the following properties hold.

1. The ordered tuple (w0, . . . , wn−d−1) is a cyclic permutation of the or-
dered tuple (vd, . . . , vn−1).

2. If we write m∗i for the number of pebbles at the vertex wi, then we have

m∗0 + · · ·+m∗k−1 ≥
k(N − 2d + 1)

n− d
=
k
((

2d − 1
)

(q − 1) + 2r
)

d(q − 1) + r

for 1 ≤ k ≤ n− d.

Lemma 7 again ensures (assuming that q−1 ≥ 1) thatm∗0+· · ·+m∗k−1 ≥ 2k

for 1 ≤ k ≤ d−1. Suppose that w0 = vi for some i with n−d+1 ≤ i ≤ n−1.
Then Corollary 5 shows that we can move a pebble from w0 to v0, and then
as above we can move this pebble from v0 to vd−1. Since the distance from
w0 to vd−1 is at least d vertices, we are finished. Hence we can assume that
i ≤ n − d. That is, we can assume that the path from w0 to wd−1 does
not include any of the vertices v0, . . . , vd−1, and this implies that the vertices
w0, . . . , wd−1 are consecutive as we move around the cycle graph. Corollary
5 now shows that we can move a pebble from w0 to wd−1. Again, if we
have m∗0 + · · ·+ m∗d−1 ≥ 2d, then we could move a pebble from w0 even fur-
ther, which would be a distance of at least d. Hence we may assume that
m∗0 + · · ·+m∗d−1 ≤ 2d − 1.
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We can now repeat the above argument with the remaining vertices to
show that either some pebble can be moved a distance of d vertices, or else
there must exist a third set of d consecutive vertices, disjoint to the two
sets we have already found, which contains a total of at most 2d − 1 peb-
bles and such that we can move a pebble from the first vertex to the last.
Continuing in this manner, we can in fact show that either some pebble can
be moved a distance of at least d vertices or else there must exist q such
mutually disjoint sets. This leaves us with r vertices for which we have not
yet accounted, and these vertices will contain at least 2r pebbles among them.

Again, we can relabel these final remaining vertices consecutively as
vx0 , . . . , vxr−1 in such a way that if m∗∗i denotes the number of pebbles on
vxi , then we have m∗∗0 + · · · + m∗∗k−1 ≥ k · 2r/r ≥ 2k for 1 ≤ k ≤ r. Now fix
k to be the smallest number so that vxk+1

6= vxk+1, i.e., so that the vertex
following vxk on the graph is not one of the vxi . (If the vertices vx0 , . . . , vxr−1

are all consecutive, then we take k = r − 1.) Then the vertex vxk+1 is the
first vertex in one of the sets described in the previous paragraph. Corollary
5 shows that we can move a pebble from vx0 to vxk+1, and then the way we
constructed our sets in the previous paragraph shows that we can further
move this pebble from vxk+1 to vxk+d. Hence this pebble can be moved a
total of at least d vertices. This completes the proof of the theorem.
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